The Use of Disposable and Alternative Purification Technologies for Biopharmaceuticals

Tom Ransohoff
BioProcess Technology Consultants
July 22, 2005
IIR Biopharmaceutical Production Conference
Presentation outline

- Driving forces for use of disposable and alternative purification technologies
- Examples of current technologies
- Obstacles to implementation
- Future possibilities
Driving Forces
Driving forces for disposable and alternative purification technologies

- Business drivers for alternative approaches to biopharmaceutical manufacturing:
 - Need to reduce capital investment in high-risk projects
 - Speed to clinical proof-of-concept and commercial launch

- Operational trends favoring disposables:
 - Increasing focus on cleaning and cleaning validation
 - Increasing availability of suitable disposable processing equipment throughout the biopharmaceutical flowpath:
 - Flexible bioreactors
 - Media and buffer bags
 - Disposable aseptic filling equipment

- Trend towards large volume monoclonal antibody processes:
 - Increasing productivity and scale of upstream processes
 - Purification increasingly becoming a bottleneck
The majority of manufacturing costs for most biopharmaceuticals are fixed costs.

Data from a process economic model of a typical mammalian cell culture-derived monoclonal antibody.
Project risk and capital cost decrease significantly as development progresses.

* - Cost of Capital estimate based on discount factors from a risk-adjusted NPV analysis.
Technologies that
 • reduce capital investment and/or
 • increase speed to risk-reduction milestones
are inherently more valuable in high-risk projects

⇒ There is a compelling financial and risk-management argument for disposable manufacturing technologies in early-stage biopharmaceutical development
Examples of Process Use of Disposable Bioreactors

➢ Use of disposable bioreactors for production at 100L+ scale:

➢ Use of disposable bioreactors for production at smaller scales:

➢ Use of disposable bioreactors to replace conventional bioreactors in the inoculum train of large scale processes:
 • Knevelman, C et al, “Characterisation and Operation of a Disposable Bioreactor as a Replacement for Conventional Steam in Place Inoculum Bioreactors for Mammalian Cell Culture Processes,” ACS poster presentation (2002).
Disposable products* exist across most of the biopharmaceutical manufacturing flowpath

Wave Bioreactors

- Fermentation
- Media Prep/ Storage

Limited

- Purification
- Buffer Prep/ Storage

Formulation/ Fill

Stedim Bags, Hynetics Mixers

* - Suppliers listed are examples, not an endorsement of any specific company or technology
Downstream processing unit operations

- **Normal Flow Filtration**
 - Depth filtration for clarification
 - Nanofiltration for virus removal
 - Sterile filtration

- **Tangential Flow Filtration**
 - Ultrafiltration for concentration and buffer exchange
 - Microfiltration for clarification

- **Centrifugation**
 - Clarification
 - Inclusion body isolation

- **Cell Breakage/Homogenization**
 - For recovery of products expressed intracellularly

- **Refolding**
 - For some *E. coli* products

- **Crystallization/Precipitation**

- **Chromatography and adsorptive separations**
 - Typical downstream process includes 3 – 4 chromatography and/or membrane adsorber steps
 - Ion exchange
 - Hydrophobic interaction
 - Affinity
 - Size exclusion
 - Reverse phase
• Fastest growing commercial biopharmaceutical segment is monoclonal antibodies at 40%/year
• Trend for commercial products is from agonists to antagonists -> larger volume, less expensive ($/g) products

Source: BPTC 2004 Annual Manufacturing Capacity Analysis
Clinical biopharmaceutical pipeline is weighted towards antibody-based products

- Biopharmaceutical pipeline is 70% mammalian cell culture
- Significant trend towards antibody-based products is ~ 85% of mammalian cell culture pipeline
- This analysis covers recombinant protein and monoclonal antibody product candidates only

Source: BPTC 2004 Annual Manufacturing Capacity Analysis
Typical material requirements – clinical development

- Pre-clinical development: 0.1 - 2 kg
- Phase I: 0.1 – 1 kg
- Phase II: 0.5 – 5 kg
- Phase III: 1 – 20 kg
Material requirements – commercial biopharmaceuticals

- Highly product dependent
- For microbial fermentation-derived products, commercial requirements range from:
 - ~10 g/yr (e.g., Infergen) to…
 - ~5,000 kg/yr (Novolin)
 - Most products require 0.5-50 kg/yr
- For mammalian cell culture-derived products, commercial requirements range from:
 - ~10 g/yr (e.g., Bexxar/Zevalin) to…
 - ~750 kg/yr (Rituxan)
 - Most non-antibody products require <10 kg/yr
 - Most antibody products require 10-500 kg/yr
Total estimated bulk product requirements for mammalian cell culture commercial products (2004):
- All mammalian products – 2,875 kg/yr
- Monoclonal antibodies – 2,810 kg/yr
- rProteins – 65 kg/yr

Significant growth in bulk requirements over recent years due to successful MAbs:

Source: BPTC 2004 Annual Manufacturing Capacity Analysis
Current Approaches
Examples of current “disposable format” purification products and technologies

- Membrane adsorbers
- Pre-packed chromatography columns or cartridges
- Disposable flow-path system concepts
Sartobind® Membrane Adsorbers

- Matrix: stabilized and cross-linked cellulose >3\(\mu\)m pore size
- Q,S,C,D and affinity ligands (ProtA, IDA, pABA, etc)
- Very low unspecific adsorption
- High chemical resistance against solvents, acids and caustic solutions and autoclaving
DNA removal

...clears the DNA below detection limit

- Average of eight 2,000 liter batches using 70 ml Sartobind
- Average of three 12,500 liter batches using 500 ml Sartobind
Other examples of process use of membrane adsorbers

BIOFLASH 12™ and BIOFLASH 80™ Prepacked Columns

Column Specifications
Pressure Rating 10-20 bar
 w/ module 33 bar
Diameters 1.2, 8, and 20 cm
Bed Length 5 – 30 cm
Bed Volume 5 mL – 5+ L

Courtesy of BioSepTec, Inc.
High performance packing in a disposable format

CM Toyopearl 650
BioFlash 80
(10 cm H)

Efficiency measured using 5% acetone in 0.1M NaCl as mobile phase.

Ret. Time 4.77
Efficiency 823
Assym. 1.03

Courtesy of BioSepTec, Inc.
Scale-up of recombinant protein separation on BioFlash pre-packed column

Purification of EPI-HNE-4 on Macroprep 25S at 100 cm/hr.

Introducing...

The Millipore Pod Filter Platform

- Improves process flexibility
- Decreases processing time
- More robust and scalable
- Easier to setup and use
- Minimizes product loss
- Enhances operator safety
- Reduces cleaning requirements
- Improves process economics
Improved Handling and Ease of Use

- Improved CIP of Hardware
 - Self-contained, disposable Pods
 - Disposable feed ports and fittings
 - No product contact with endplates or process skid

- Improved Handling
 - No messy spent filters
 - Lightweight, easy to set up and use
 - No hoist or high ceiling required
Impact of increasing cell culture titer and scale on downstream processes

- Cell culture titers of 4 g/L are now achievable for monoclonal antibodies:

- New facilities are increasing bioreactor scale to 20+ m³ to meet requirements of large volume products:
 - Lonza Portsmouth: 3 x 20,000 L (on-line) + 1 x 20,000 L (2006)
 - Genentech Vacaville CCP-2: 8 x 25,000 L (2009)

- At 4 g/L, a 25,000 L bioreactor will yield 100 kg per batch

- Increasing production scale and titers present challenges and opportunities for downstream process operation
Current approaches to managing high volume processes

- At 4 g/L, a 25,000 L bioreactor yields 100 kg per batch
 - At a loading capacity of 20 g/L during capture chromatography,
 - 8 cycles on a 2 m (ID) x 20 cm (H) column (CV ~ 630 L) are required
 - At 15 CV buffer per cycle, 75,000 L of buffer are needed per batch per chromatography step

- Current approaches based on maximizing value of existing conventional technology approaches (cf Smith*):
 - On-line dilution to reduce buffer storage requirements
 - Move to more rigid capture media to achieve higher velocities on chromatography steps
 - Multiple chromatography cycles (5-20) per batch
 - Load chromatography columns at/near break-through
 - Optimize UF steps to improve utilization of membranes

- These approaches work, but may have a limited lifespan -> parallel track investment in novel technologies

Obstacles and Future Possibilities
Potential obstacles to implementation of disposable or alternative technologies

- Cost
- Extractables and Leachates
- Inertia
The use of disposable-format purification technology will generally:

• Reduce capital costs
• Reduce labor requirements for setup/cleaning/cleaning validation
• Increase direct materials costs

The magnitude of the direct material cost impact for disposable chromatography is assessed for two situations:

• Clinical manufacturing for an outsourced early-stage product
• Commercial large-scale manufacturing
Clinical Process and Analytical Development

<table>
<thead>
<tr>
<th>Activity</th>
<th>Time</th>
<th>Approximate Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Line Development (includes Vector Construction, Transfection, Selection, Identification of Final Clone)*</td>
<td>4 – 6 months</td>
<td>$150,000 – 500,000</td>
</tr>
<tr>
<td>Master and Working Cell Bank Generation*</td>
<td>4 – 6 months</td>
<td>$75,000 – 200,000</td>
</tr>
<tr>
<td>Process Development</td>
<td>8 months</td>
<td>$500,000 – 1,500,000</td>
</tr>
<tr>
<td>Process Scale-up</td>
<td>3 months</td>
<td>$300,000</td>
</tr>
<tr>
<td>Analytical Development and Qualification</td>
<td>9 months</td>
<td>$150,000</td>
</tr>
<tr>
<td>Viral Clearance Validation* – (1-3 model virus)</td>
<td>6 – 12 months</td>
<td>$150,000 - $250,000</td>
</tr>
</tbody>
</table>

TOTAL | - | ~ $1.5-3 million |

cGMP Manufacturing

- Clinical engineering and cGMP mfg lots ~$400k – 600k per batch (bulk)
- cGMP aseptic filling* of clinical lots ~$75k – 125k per lot

* - Activities that are frequently sub-contracted to other service providers
Cost impact for disposable chromatography in clinical manufacturing

<table>
<thead>
<tr>
<th>Total Project Costs - Clinical Manufacturing</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process/Analytical Development Costs</td>
<td>$1,500</td>
<td>$3,000</td>
</tr>
<tr>
<td>Total Manufacturing Costs</td>
<td>$475</td>
<td>$2,525</td>
</tr>
<tr>
<td>Cost per lot</td>
<td>$400</td>
<td>$600</td>
</tr>
<tr>
<td># of bulk lots</td>
<td>$1</td>
<td>$4</td>
</tr>
<tr>
<td>Cost of DP mfg</td>
<td>$75</td>
<td>$125</td>
</tr>
<tr>
<td>TOTAL COSTS</td>
<td>$1,975</td>
<td>$5,525</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Media cost of using disposable capture affinity chromatography</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assumptions</td>
</tr>
<tr>
<td>Cost of media</td>
</tr>
<tr>
<td># of cycles per lot</td>
</tr>
<tr>
<td>Binding capacity</td>
</tr>
<tr>
<td>Volume of media</td>
</tr>
<tr>
<td>Cost of use as a disposable</td>
</tr>
<tr>
<td>As a % of Total Costs</td>
</tr>
<tr>
<td>As a % of Manufacturing Costs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Media cost of using disposable ion exchange chromatography</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assumptions</td>
</tr>
<tr>
<td>Cost of media</td>
</tr>
<tr>
<td># of cycles per lot</td>
</tr>
<tr>
<td>Binding capacity</td>
</tr>
<tr>
<td>Volume of media</td>
</tr>
<tr>
<td>Cost of use as a disposable</td>
</tr>
<tr>
<td>As a % of Total Costs</td>
</tr>
<tr>
<td>As a % of Manufacturing Costs</td>
</tr>
</tbody>
</table>

- With non-disposable approach, initial investment in media will be at least equivalent to single lot cost.
- Benefits of using disposable chromatography approach may be significant enough in this application to justify modest additional operating costs:
 - Improved manufacturing efficiency
 - Improved process portability
 - Reduced risk of cross-contamination
Summary of COG estimates for a “typical” commercial-scale monoclonal antibody process
Cost impact for disposable chromatography in large-scale manufacturing

<table>
<thead>
<tr>
<th>Commercial Manufacturing Costs</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Manufacturing Costs ($M/yr)</td>
<td>$40</td>
<td>$150</td>
</tr>
<tr>
<td>Cost per gram</td>
<td>$400</td>
<td>$150</td>
</tr>
<tr>
<td>Annual requirements (kg/yr)</td>
<td>100</td>
<td>1,000</td>
</tr>
<tr>
<td>Total Materials Costs ($M/yr)</td>
<td>$5</td>
<td>$44</td>
</tr>
<tr>
<td>Materials Costs as % of Total Costs</td>
<td>13%</td>
<td>29%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Process Assumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale</td>
</tr>
<tr>
<td>Titer</td>
</tr>
<tr>
<td>Yield</td>
</tr>
<tr>
<td>Output</td>
</tr>
<tr>
<td># of batches/yr</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Media cost of using disposable capture affinity chromatography</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assumptions</td>
</tr>
<tr>
<td>Cost of media</td>
</tr>
<tr>
<td># of cycles per lot</td>
</tr>
<tr>
<td>Binding capacity</td>
</tr>
<tr>
<td>Volume of media per batch</td>
</tr>
<tr>
<td>Cost of use as a disposable ($M/yr)</td>
</tr>
<tr>
<td>Cost per g product produced ($/g)</td>
</tr>
<tr>
<td>As a % of Total Mfg Costs</td>
</tr>
<tr>
<td>As a % of Total Matl Costs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Media cost of using disposable ion exchange chromatography</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assumptions</td>
</tr>
<tr>
<td>Cost of media</td>
</tr>
<tr>
<td># of cycles per lot</td>
</tr>
<tr>
<td>Binding capacity</td>
</tr>
<tr>
<td>Volume of media per batch</td>
</tr>
<tr>
<td>Cost of use as a disposable ($M/yr)</td>
</tr>
<tr>
<td>Cost per g product produced ($/g)</td>
</tr>
<tr>
<td>As a % of Total Mfg Costs</td>
</tr>
<tr>
<td>As a % of Total Matl Costs</td>
</tr>
</tbody>
</table>

- Operating cost impact of disposable chromatography approach far greater in this application.
- Alternative approaches required to significantly impact costs in large-scale commercial manufacturing.
Extractables and leachates are a potential concern with any disposable technology. Level of concern increases as product purity increases. Weidner presented work at Biogen Idec to address regulatory requests related to extractables:

- Risk-based assessment of extractables based on
 - Process step
 - Contact time
 - Temperature
 - Solvent
 - Stage of development
 - Vendor provided information on extractables and toxicological testing
- Conduct extractable tests where warranted based on potential risk
 - Mass transfer principles guide test design
 - Analytical methods for quantification and identification appropriate to situation
 - Results assessed against acceptance criteria or by evaluation of toxicological risk

Inertia: driving forces against use of novel technology and approaches

- There are significant costs and risks associated with process innovation in any highly regulated industry
 - Conservative approach to implementation of new technologies
 - Security of supply is a concern that must be addressed
- The complexity of biopharmaceutical processes provide additional challenges
- There is no good time to innovate: significant obstacles to implementation of new technologies exist at every stage of development

Result: New technologies often take longer than anticipated to implement, even when a compelling need exists.
Future trends

- Increased use of disposable purification technologies, particularly in smaller volume processes, driven by:
 - Continued advances in and increased use of disposable systems across the biopharmaceutical manufacturing flowpath
 - Implementation of new materials that significantly reduce per liter costs and allow increased throughput, potentially including:
 - Cost-effective affinity media
 - Novel membrane materials and adsorptive separation supports

- Increasing interest in alternative technologies and operating approaches for large-volume processes as optimization of conventional technologies matures, including:
 - Operating approaches that move away from “big batch” and towards continuous purification processes (e.g., SMB-like processes)
 - Integration of unit operations (i.e., semi-continuous capture and clarification)
 - Implementation of novel (to biotech) technologies and unit operations
Summary

- Current existing technology meets *some* of the requirements for cost-effective disposable purification solutions
 - Membrane adsorbers
 - Pre-packed columns
 - Disposable-format systems

- Trends in biopharmaceutical manufacturing are increasing the need for disposable or alternative purification technologies:
 - Increasing use of disposable technologies to reduce capital investment and product development times
 - Increasing titer and scale of monoclonal antibody cell culture production

- The use of disposable and alternative purification technologies will increase as:
 - The trends towards disposable equipment and large volume processes continue
 - New technology and viable solutions are introduced that provide solutions more broadly for purification unit operations
Thank you!

BioProcess Technology Consultants, Inc.

289 Great Road, Suite 303
Acton, MA 01720

978 266-9154
www.bioprocessconsultants.com
Carousel-type SMB evaluation of Protein A separation

- Columns are mounted on a slowly rotating carousel
- The columns on the carousel are connected to the pumps and vessels via a rotary valve
- Switching mode simulates continuous adsorbent flow